1. Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 2012; 23(9): 2239-56. doi: 10.1007/s00198-012-1964-3.
2. Bojsen-Møller F, Tranum-Jensen J, Simonsen EB. Bevægeapparatets Anatomi. Copenhagen: Munksgaard; 2014.
3. Reddy AC, Kotiveerchari B. Simulation of femur bone fracture in car accident using CT scan data and finite element analysis. Int J Sci Res 2015; 4(11): 1805-7. doi: 10.21275/v4i11.nov151552.
4. Soveid M, Serati AR, Masoompoor M. Incidence of hip fracture in Shiraz, Iran. Osteoporos Int 2005; 16(11): 1412- 6. doi: 10.1007/s00198-005-1854-z.
5. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int 1997; 7(5): 407-13. doi: 10.1007/pl00004148.
6. Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. Lancet 2005; 366(9500): 1885-93. doi: 10.1016/ s0140-6736(05)67604-0.
7. Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 2001; 23(3): 165-73. doi: 10.1016/s1350-4533(01)00045-5.
8. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 2005; (437): 219-28. doi: 10.1097/01.blo.0000164400.37905.22.
9. Koivumäki JE, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, et al. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 2012; 50(4): 824-9. doi: 10.1016/j. bone.2012.01.012.
10. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 1999; 32(10): 1013-20. doi: 10.1016/s0021-9290(99)00099-8.
11. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech 1998; 31(2): 125-33. doi: 10.1016/ s0021-9290(97)00123-1.
12. Sepehri B, Yazdi AA, Rouhi G. Comparison of the Effect of Different Mechanical Properties on the Stress Analysis of Tibia under Transversal Impact Loading Using Finite Element Method. In: Lim CT, Goh JCH, eds. 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore. Berlin: Springer; 2010. p. 788-91. doi: 10.1007/978-3-642-14515-5_200.
13. Ridzwan MIZ, Pal B, Hansen UN. Finite element prediction of hip fracture during a sideways fall. International Scholarly and Scientific Research & Innovation 2012; 6(10): 476-9.
14. Ford CM, Keaveny TM, Hayes WC. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 1996; 11(3):377-83.
15. Arun KV, Jadhav KK. Behaviour of human femur bone under bending and impact loads. Eur J Clin Biomed Sci 2016; 2(2): 6-13. doi: 10.11648/j.ejcbs.20160202.11.
16. Zdero R, Aziz MSR, Nicayenzi B. Quasi-static stiffness and strength testing of whole bones and implants. In: Zdero R, ed. Experimental Methods in Orthopaedic Biomechanics. Academic Press; 2017. p. 19-32. doi: 10.1016/B978-0-12- 803802-4.00002-0.
17. Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 2003; 25(9): 781-7. doi: 10.1016/s1350-4533(03)00081-x.
18. Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech 1975; 8(6): 393-405. doi: 10.1016/0021-9290(75)90075-5.
19. Tippanagoudar N, Krishna A. Finite element analysis of tibia bone. Int J Eng Sci Comput 2018; 8(12): 19534-7.